
TRANSIENT RESPONSE 
INTRODUCTION: - As we are aware that the terminal characteristics of capacitors and 
inductors are governed by differential relationships. The connection of these elements with the 
resistors and energy sources will result in integro-differential (or) simply differential equations 
with constant coefficients. The solutions of these equations in time – domain gives the 
“TRANSIENT RESPONSE” of the system of equations. The time – domain response of the 
circuit for different test signals is almost important to synthesize (or) design electronic circuits. 
 Whenever a circuit is switched from one condition to another, either by a change in the 
applied source or a change in the circuit elements, there is a transition period during which the 
branch currents and element voltages change from their former values to new values. The 
period is called the “TRANSIENT STATE (or) NATURAL RESPONSE”. After the transient 
period has passed, the circuit is said to be in the “STEADY STATE (or) FORCED 
RESPONSE”. Thus, the total response of the network is the sum of its transient response and 
steady state response.  
 Now, the linear differential equation that describes the circuit will have two parts to its 
solution, the complementary function corresponding to the transient and the particular solution 
corresponding to the steady state.  

INITIAL VALUES OF NETWORK ELEMENTS 
RESISTOR: - 
If a circuit is purely resistive, it does not exhibit any transient response. Thus in the circuit, the 
current instantaneously rises to its steady state value ie., 

 
R
Vi = , and there is no transient response.  

 
Represents the instant just prior to the closing of the switch at t = 0. 

R 

V(t) 

t = 0 i(t) 

→= −0t
Represents the instant immediately after closing of the switch at t = 0.   →= +0t

R
Vit =→= +0At i = 0, but at       →= −0t

INDCUTOR: -       

V(t) 

i(t) t = 0 L If a circuit is purely inductor as shown in figure. 
If the switch is closed at t = 0, by, applying KVL to the circuit 

+>= 0tfor
dt

idLV  

At , the current is zero, assuming the circuit to be relaxed [ie., No initial inductor current]. −= 0t
At , the current must still be zero, since the current through an inductor cannot become 
zero instantaneously, even if it is not zero at  . 

+= 0t
−= 0t

     +==∴ 00 tAti
Hence, it is obvious that at , the inductor ‘L’ act as an open circuit. The equivalent circuit 
at is as shown in figure… 

)0( +t
)0( +t

 
       ⇒ ‘L’ is replaced by an open circuit 

 
 
However, if at the inductor is already carrying a current due to a previously applied 
forcing function, it would continue to flow at , without change of magnitude. 

)0( −t
V(t) 

i(t) 
O C 

)0( +t
Let ‘I ’ be the initial inductor current as shown in figure… 

V(t) 

i(t) t = 0 L 

I0

0
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The equivalent circuit at is shown in figure… )0( +t
     

 
 
 
 

i(t) 

O C 

I0

 V(t) 
 
‘L’ is replaced by open and ‘I ’ is replaced by equal current source. 0

CAPACITOR: - 
If the circuit contains pure capacitor as shown in figure. 

  V(t) 

  i(t) 

t = 0 C 

If the switch is closed at t = 0 by, applying  
KVL to the circuit 

dt
VdCi

tfordti
C

V

=

>= ∫ +01

   

At , the voltage across capacitor is zero, assuming the circuit to be relaxed [ie., No initial 
capacitor voltage]. Also current, . 

−= 0t
0=i

At , the voltage across capacitor must be zero, since the voltage across a capacitor cannot 
become zero instantaneously even if it is not zero at . It means that, at , the capacitor 
acts as Short Circuit. The equivalent circuit at is as shown in figure… 

+= 0t
−= 0t += 0t

)0( +t
 
Hence ‘C’ is replaced by short circuit      ⇒  
 
 
 
However, at , if there is a capacitor voltage due to previously applied forcing function, 
then at  also, it would remain without change in magnitude. 

i(t) 

S C 

V(t) 
−= 0t

+= 0t
Let ‘V ’ be initial capacitor voltage as shown in figure… 0

 
 
 
 
 
The equivalent circuit at is shown in figure… )0( +t

  V(t) 

  i(t) 

t = 0 C 

−+ 0V  

 
−+

i(t) 

  V(t) 

  V0

S C 
 
 
 
 
‘C’ is replaced by Short Circuit and ‘V ’ is replaced by an equal voltage source. 0

FINAL VALUES OF NETWORK ELEMENTS 
 We shall next see how we can obtain equivalent circuits under Steady state conditions 
ie., at t =  ∞ . 
RESISTOR: - 
 A resistor obviously remains un effected. Hence a resistance R of a given network 
remains as ‘R’ only in the equivalent circuit at t = ∞. also. 
INDUCTOR: - 
 We have induced e.m.f in an inductor across ‘L’ then 
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dt
idLVL =     

When Steady state has been reached ie., at t = ∞., there is no change of current 

    i.e., 00 =∴= LV
dt

id  

Since, there is no inductor voltage, it implies that the inductor acts as short – circuit. Hence an 
inductor acts as open – circuit at t = 0 , but it acts as short – circuit at t = ∞. +

 

V(t) 

i(t) t = 0 L 
 
 
 
 
Equivalent circuit at t = ∞. 

i(t) 

S C 

    V(t) 

 
 
 
 
CAPACITOR: -  
The current through a capacitor is given as 

dt
VdCi C=    where VC  Capacitor voltage 

At Steady state, there is no change of capacitor voltage  

00 =∴= i
dt
Vd C     

It implies that the capacitor acts as an open – circuit at t = ∞.  
 
Hence a capacitor acts as short – circuit at t = 0 , but acts as open – circuit at t = ∞. +

  
  

  V(t) 

i(t) 

t = 0 C 

 
 
 
 
Equivalent circuit of t = ∞. 
 

V(t) 

i(t) 
O C   

 
 
 
 
SUMMARY: 

 The current through an inductor cannot change instantaneously. 
 Voltage across a capacitor cannot change instantaneously. 
 At t (0+), an inductor acts as an open – circuit.  
 At t (0+), a capacitor acts as short – circuit. 
 At t (0+), with initial inductor current ‘I0’ is replaced by an equal current source with the 

same polarity. 
 At t (0+), with an initial capacitor voltage ‘V0’ is replaced by an equal voltage source with 

the same polarity. 
 At t (0+) and at t = ∞, a resistor remains as it is, without any change. 
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 An inductor acts as short – circuit, under Steady state conditions, for a forcing function 
of constant magnitude like step (or) DC voltage. 

 A capacitor acts as open – circuit, under Steady state conditions, for a forcing function of 
constant magnitude like step (or) DC voltage. 

TRANSIENT RESPONSE IN TIME DOMAIN WITH CONSTANT INPUT 
[DC EXCITATION] 

RC CIRCUIT 
The constant input as shown in figure….. is called step input (or) constant input.  Since it 

steps from 0 to V volts at a time t=0 
 Let us assume that the voltage is suddenly applied at t=0 to the RC circuit shown in 
figure.  Let us assume the initial charge on the capacitor is zero. 
 
 
 
 
 
 
 
 
          FIG : RC Circuit with Step Input 

0 

V 

t(Sec) 

v 

t=0 
R 

C 
v 

+ 

VCi

 At t = 0 Q -       VC (O - ) = 0 
    At t = 0        V+ C (O  ) = 0  [QVoltage across capacitor cannot change instantaneously] +

 Initially it act as short circuit  

R
VOi =∴ + )(  

 Let ‘i’ be the current flowing in the circuit when the switch is closed at t = 0.  Using KVL, 
the equilibrium equation is  

vdti
C

Ri =+ ∫
1   ….(1) 

 Differentiating the equation (1) with respect to time ‘t’. 

01
=⎥⎦

⎤
⎢⎣
⎡ +⇒ i

RC
D0101

=+⇒=+ i
RCdt

dii
Cdt

diR    ….(2)  

 The equation (2) is a first order linear homogeneous equation.  Hence the total solution 
will have only complementary function, and particular integral is zero. 
    …. (3) RCtAeti /)( −=
To evaluate the constant ‘A’ we will use the initial condition i.e., 

R
V  i(0 ) =  +

R
V  i(0)|  = A =  t=0

τ// )()()( tRCt e
R
Vtiore

R
Vti −− ==∴  ….(4) 

 This solution is called Natural response of the circuit and also called as the 
complementary function.  Where τ=RC is called the time constant of an RC circuit. 
VOLTAGE ACROSS CAPACITOR: 

 [ ][ ]∫∫ −

−

− ===
t

ttt
C e

RC
Vdte

R
V

C
dti

C
V

0
0

/

1

/ 111 τ

τ

τ  
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( )[ ] [ ] [ ]τττ //
0

/ 11 tttt eVeVeRC
RC
V −−− −=−−=−  …..(5) 

 As ‘t’ is varying from 0 to ∞ the time response characteristics of current and voltage 
across the capacitor from equations (4) and (5) are shown in figure. 
 

0
t in sec

VC

Response 

63.2% 

R
V

i

τ 

V 
 
 
 
 
 
 
 

τ/te
R
V −The transient solution is a total solution of the circuits i.e., i(t)=iss+i  = .  Where ‘it ss’ 

is steady state value and ‘it’ is the transient value.  The response of the circuit will depend upon 
‘τ’.  If ‘R’ and ‘C’ are larger then the circuit takes longer time to settle down to the new steady 
state value. 
TIME CONSTANT 
The interpretation of the time constant as ‘the time interval during which the response of the 
circuit starting from any point of time during the transient interval, would have reached its 
final value if it had maintained its rate of change constant at the value it had at that point of 
time”. If the time is equal to one time constant then VC = V(1-e-1) = 0.632V. The time constant 
can be regarded as the time required for the transient response to attain 63.2% of the steady 
state value starting from zero. In two, three, four (or) five time constants the time response 
values would be 0.864, 0.95, 0.982 and 0.993 of its steady state value.  For all practical purposes 
most of the electrical instruments used for measurement of electrical quantities will have a least 
count of 1% after approximately five time constants have elapsed. 

RL CIRCUIT 
 The RL network is excited by a step input is shown in figure.  Let us assume that at the 
time t=0 the switch is closed and initially the current through the inductor is zero. 
    At t = 0 -       iL (O - ) = 0 
    At t = 0 +       iL (O + ) = 0   
[QCurrent in the inductor cannot change instantaneously] 

t=0 
R 

L 
v 

+ 

VLi 

 Using KVL, the equilibrium equation is  

v
dt
diLRi =+                           ….(1)  

L
Vi

L
RD =⎥⎦
⎤

⎢⎣
⎡ +⇒

L
Vi

L
R

dt
di

=+  ….(2)  

 The equation (2) is a first order differential equation and the solution gives the response 
of the circuit.  To get the solution we will obtain the transient part [complementary function] 
and steady state part [particular integral] separately.  The transient part of the solution is 
obtained by solving the homogenous part of the differential equation by making forcing 
function to zero. 

 i.e., 0=⎥⎦
⎤

⎢⎣
⎡ + i

L
RD  

 The general solution is of the form 
t

t
L
R

Aei −=  …..(3) 
 Steady state part of the solution (or) particular integral is obtained from 
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⎥⎦
⎤

⎢⎣
⎡ +

=⇒=⎥⎦
⎤

⎢⎣
⎡ +

L
RDL

Vi
L
Vi

L
RD  

 To get the steady state part of the solution, substitute D=0 [for DC excitation]. 

R
V

L
RL

Viss ==
*

  ….(4)  

 The complete solution is 
t

L
R

tss Ae
R
Viii

−
+=+=  

 To evaluate the constant A, we use initial condition i(0 )=0 At  t = 0 + +

R
VA

R
VAA

R
Vi −=⇒+=⇒+=+ 0)0(  

 ∴The complete solution is 

[ ]τ/1)( tt e
R
Ve

R
V

R
Vti L

R
−− −=−=  ….(5) 

R
L Where ‘τ’ is the time constant and is equal to  

VOLTAGE ACROSS THE INDUCTOR: 

 The voltage across the inductor 
dt
diLL =V  

( )
τ

τ

τ
/

/

1
1

t

t

L e
R

VL
dt

e
R
Vd

LV −

−

⎟
⎠
⎞

⎜
⎝
⎛=

⎥⎦
⎤

⎢⎣
⎡ −

=⇒ ττ //* tt Vee
L
R

R
VL −− ==   …….(6) 

 As ‘t’ is varying from 0 to ∞ the time response characteristics of current and voltage 
across the inductor from equations (5) & (6) are shown in figure…… 
 

0
t in sec

Response 

R
V

VL

 
 
 
 
 
 
 
 
TIME CONSTANT 
If the time is equal to one time constant then VL = V(e-1) = 0.3678 Volts. The time constant can 
be regarded as the time required for the transient response to attain 36.78% of initial value. 

RLC CIRCUIT 
The behaviour of an RLC series circuit with constant t=0 

R L excitation is presented here.  Such RLC circuits are of 
great importance, since they occur, in many practical 
situations. In the figure shown above. A battery of  
voltage ‘V’ is suddenly applied to the series RLC  
circuit with no-initial current in the inductor and  
initial charge on the capacitor 
    At t = 0 -       iL (0 -) = 0 ; VC (0 -) = 0 
    At t = 0 +       iL (0+) = 0; VC (0 +) = 0 

v

+ 

i 
C 
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 Applying KVL, the equilibrium equation is  

Vdti
Cdt

diLRi =++ ∫
1   ….(1)  

 Differentiating with respect to time, ‘t’ 

01
2

2

=++ i
Cdt

diL
dt
diR 01

2

2

=++⇒ i
LCdt

di
L
R

dt
di 012 =⎥⎦

⎤
⎢⎣
⎡ ++⇒ i

LC
D

L
RD  ….(2) 

This is a second order differential equation and it is a homogeneous equation. 
The solution of this equation is of the form 

    …..(3) 
tm

Be
tm

Aei 21 +=
 Where ‘A’ and ‘B’ are constants to be determined from the initial conditions of the 
network and m1 and m2 are the roots of characteristic equations. 

012 =++
LC

D
L
RD   

 The roots of the characteristic equation are   

LCL
R

L
RLCL

R
L
R

mm 1
222

14
,

2

2

21 −⎟
⎠
⎞

⎜
⎝
⎛±

−
=

⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛±−

=  

 The response of the network depends on the nature of the roots m  and m1 2.  Also depend 
up on the value under radical.  Three cases of these roots are explained below. 

LCL
R 1

2

2

−⎟
⎠
⎞

⎜
⎝
⎛

LCL
R 1

2

2

>⎟
⎠
⎞

⎜
⎝
⎛CASE 1 : When is positive.  In this case .  Hence the roots are 

negative real.  The response of the circuit is with out oscillations as shown in figure, curve 1.  In 
this case the final value is reached more slowly and is said to be over damped. 

LCL
R 1

2

2

−⎟
⎠
⎞

⎜
⎝
⎛

LCL
R 1

2

2

=⎟
⎠
⎞

⎜
⎝
⎛CASE 2 : When  is equal to zero.  In this case .  Hence the roots are 

equal to 
L

R
2

− .  In this case the response rises faster than curve 1 without any oscillations and 

no over-shoot on the final value.  This response is called critically damped and is shown by 
curve 2 in figure.  The time of response is shortest. 

LCL
R 1

2

2

−⎟
⎠
⎞

⎜
⎝
⎛

LCL
R 1

2

2

<⎟
⎠
⎞

⎜
⎝
⎛CASE 3 : When  is negative i.e.,  then the roots m1 and m2 are 

complex conjugates with negative real parts.  The response of the system is oscillatory with 
over shoots on the final value.  This response is termed as under damped.  Such a response is 
often said to be ringing.  The under damped behaviour is shown by curve 3 in figure. 
 
 
 
 
 
 
 
 
 
 
 
    FIG : RESPONSE OF THE CIRCUIT 

Curve (3)i

0
t in sec

Curve (1)

Curve (2)
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THE EXPRESSION FOR CIRCUIT CURRENT 
The expression for current of an RLC series circuit may be written as 

02 2
2

2

=++ i
dt
di

dt
id

nn ωζω  

1, 2
21 −±−= ζωωζ nnmm  and the solution is  Whose roots are 

tt nnnn eCeCti ⎥⎦
⎤

⎢⎣
⎡ −−−⎥⎦

⎤
⎢⎣
⎡ −+−

+=
1

2

1

1

22

)(
ζωωζζωωζ

  
 The solution will have different farms depending up on the value of ‘ζ’.  If ‘ζ’ is less than 
one then R<RC and the response is under damped.  If ‘ζ’ is equal to one then R=RC and the 
response is critically damped.  If ‘ζ’ is more than one then R>RC and the response is over 
damped. 

TRANSIENT RESPONSE WITH SINUSOIDAL INPUT 
[AC EXCITATION] 

RC CIRCUIT 
Let a sinusoidal voltage i.e., v(t) = Vm Sin (ωt+θ) be suddenly applied at time t=0 to the 

series RC circuit shown in figure….. assume the capacitor is initially unchanged. 
 
 
 
 
v(t) = Vm Sin(ωt+θ) 
 
 
        

t=0 
R 

i
C 

~ 

    At t = 0 -       V (0 -) = 0 
    At t = 0        V (0 ) = 0 + +

 And Vm and θ are constants.  Applying KVL, the equilibrium equation is  

)(1 θω +=+ ∫ tSinVdti
C

Ri m   ….(1)  

 Differentiating with respect to time, ‘t’ 

)t(CosVi
C
1

dt
diR m θ+ωω=+  …..(2)  

)(1 θω
ω

+=+⇒ tCos
R

V
i

RCdt
di m  

)(1 θω
ω

+=⎥⎦
⎤

⎢⎣
⎡ +⇒ tCos

R
V

i
RC

D m  ….(3) 

 The complementary function (or) transient part of the above differential equation is  
   ….(4) τ/

1
/

1
tRCt

t eKeKi −− ==
 Where τ=RC   Time constant 
 The steady state part of the solution of equation (1) is as follows.  Let us assume that the 
particular integral is of the form 

)()()( θωθω +++= tSinBtCosAiori ssp  

 Where ωθωωθω )()( +++−= tCosBtSinA
dt
dip  

  =  )()( θωωθωω +++− tCosBtSinA
 Substituting in equation (2) we have 
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( ) ( )[ ]θωθω +++ tBSintACos
C
1 R[-Aω Sin + BωCos ]+  )( θω +t )( θω +t

  = Vm ωCos  )( θω +t

)()()( θωωθωωθωω +=+⎥⎦
⎤

⎢⎣
⎡ +++⎥⎦

⎤
⎢⎣
⎡ − tCosVtCos

C
ABRtSinAR

C
B

m  

 Equating L.H.S. and R.H.S. we have 

ω
ωω

RC
BA

C
BARAR

C
B

=⇒=⇒=− 0   ….(5) 

)]5([2 equationfromV
RC

BBRV
C
ABR mm Qω

ω
ωωω =+⇒=+   

)1(
1

222

22

2

222

+
=⇒=⎥

⎦

⎤
⎢
⎣

⎡ +
⇒

ω
ω

ω
ω

ω
CR
RCV

BV
RC
CRB m

m  (or) 

⎥⎦
⎤

⎢⎣
⎡ +

=

22
2 1

ωC
R

RV
B m  

 Now, 

⎥⎦
⎤

⎢⎣
⎡ +

=

⎥⎦
⎤

⎢⎣
⎡ +

=

22
2

22
2 1

1*
1

ω
ωω

ω C
RC

V
RC

C
R

RV
A mm  

 Then steady state solution is given by 

)(
1

)(
1

22
2

22
2

θω

ω

θω

ω
ω

+

⎥⎦
⎤

⎢⎣
⎡ +

++

⎥⎦
⎤

⎢⎣
⎡ +

= tSin

C
R

RV
tCos

C
RC

V
i mm
ss  

 = ⎥⎦
⎤

⎢⎣
⎡ ++

+

⎥⎦
⎤

⎢⎣
⎡ +

)((
1

22
2

θω
ω

θω

ω

tSinR
C

tCos

C
R

Vm   ……(6) 

 The above expression can be written as single sinusoidal function with phase angle ‘φ’.  
The equation (6) can be written as 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ +

+
+

⎟
⎠
⎞

⎜
⎝
⎛ +

+

⎟
⎠
⎞

⎜
⎝
⎛ +

=

22
2

22
2

22
2 1

)(
1
)(

1
ω

θω

ω
ω

θω

ω C
R

tSinR

C
RC

tCos

C
R

V
i m
ss  ……(7) 

R

Z ωC
1  

φ  
From the impedance triangle of the circuit shown in figure, we get 

⎟
⎠
⎞

⎜
⎝
⎛ +

=

⎟
⎠
⎞

⎜
⎝
⎛ +

=

22
2

22
2 1

1
;

1
ω

ωφ

ω

φ

C
R

CSin

C
R

RCos  

Hence equation (7) reduced to 

[ ])()(
1

22
2

θωφθωφ

ω

+++

⎟
⎠
⎞

⎜
⎝
⎛ +

= tSinCostCosSin

C
R

V
i m
ss   

)(
1

22
2

φθω

ω

++

⎟
⎠
⎞

⎜
⎝
⎛ +

= tSin

C
R

V
i m
ss  ……..(8) 

 Where 
CR

Tan
ω

φ 11−=       Impedance angle of the circuit. 
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)( φθω ++tSin
Z

Vm The equation (8) is similar to which is same as steady state value of 

current in a RC circuit. 

 i.e., )( φθω ++= tSin
Z

V
i m
ss Leads the voltage by angle ‘φ‘. 

 The complete solution is 

)()( / φθωτ +++= − tSin
Z

VKeti mt
    ….(9) 

 The constant ‘K’ is evaluated using initial condition i.e., from equation (1) and 
substituting VC(O ) = 0 +

θSin
R

V
i m=⇒ +)0( ; Ri = V At t = 0 + m Sinθ  

 Substituting initial conditions in equation (9) we get 

)0(1 φθθ +++= Sin
Z

V
KSin

R
V mm  

 Where CR
1Tan&

C
1RZ 1

2s
2

ω
=φ⎟

⎠
⎞

⎜
⎝
⎛

ω
+= −

 

)( φθθ +−=∴ Sin
Z

V
Sin

R
V

K mm  

 ∴The complete solution is given by 

)()()( / φθωφθθ τ +++⎥⎦
⎤

⎢⎣
⎡ +−= − tSin

Z
V

eSin
Z

V
Sin

R
V

ti mtmm  ………(10)  

RL CIRCUIT 
 Consider a RL Circuit is shown in figure.  Let us assume there was no initial current in 
the inductor. 
 
 
 
v(t) = Vm Sin(ωt+θ) 
 
 
        

t=0 
R 

i
L 

~

    At t = 0 -       iL (0 -) = 0 
       i    At t = 0 + L (0 ) = 0 +

Applying KVL, the equilibrium equation is  

)( θω +=+ tSinV
dt
diLRi m   ….(1)  

)( θω +=+⇒ tSin
L

V
i

L
R

dt
di m  

)( θω +=⎥⎦
⎤

⎢⎣
⎡ +⇒ tSin

L
V

i
L
RD m  ….(2) 

 The complementary function (or) transient part of the above differential equation is  
τ/

22
tt

t eKeKi L
R

−− ==   ….(3) 

 Where τ=
R
L    Time constant 
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 The steady state part of the solution of equation (1) as follows.  Let us assume that  the 
particular integral is of the form 
  )()( θωθω +++= tSinBtCosAip

 Then )()( θωωθωω +++−= tCosBtSinA
dt
dip  

 Substituting in equation (1) we have 
 R [A Cos + B Sin ] + L [-Aω Sin +Bω Cos ] )( θω +t )( θω +t )( θω +t )( θω +t
   = Vm Sin  )( θω +t
 (BR-ALω) Sin + (AR+BLω) Cos  = V)( θω +t )( θω +t m Sin  )( θω +t
 Equating L.H.S. and R.H.S. we have 

R
BLω

− AR + BLω = 0 ⇒ A =  

)( 222 ωLR
RV

B m

+
=mmm V

R
LRBV

R
BLBRVALBR =⎥

⎦

⎤
⎢
⎣

⎡ +
⇒=+⇒=−

22222 ωωω (or)  

)()( 22222 ω
ω

ω
ω

LR
LV

LRR
RLV

A m
w

m

+
=

+
−=∴   

 ∴ The steady state solution is given by 

[ ])()(
)( 222 θωωθω

ω
+−+

+
= tCosLtSinR

LR
V

i m
ss   ….(4) 

The above expression can be written as single sinusoidal function with phase angle ‘φ’. 
The equation (4) can be written as 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

+
−+

++
= )(

)(
)(

)()( 222222222
θω

ω

ωθω
ωω

tCos
LR

LtSin
LR

R
LR

V
i m
ss  ...(5)  

 From the impedance triangle of the circuit shown in figure we get 

)(
;

)( 222222 ω

ωφ
ω

φ
LR

LSin
LR

RCos
+

=
+

=  

 
 Hence the equation (5) is reduced to 

 [ ])()(
)( 222

θωφθωφ
ω

+−+
+

= tCosSintSinCos
LR

V
i m
ss

Z
Lω

φ 

 R

)(
)( 222

φθω
ω

−+
+

= tSin
LR

V
i m
ss    …..(6) 

 Where 
R
LTan ωφ 1−=   Impedance angle of the circuit. 

Z
Vm The equation (6) is similar to Sin(ωt+θ-φ) which is same as steady state value of 

current in a RL circuit. 

)( φθω −+= tSin
Z

V
i m
ss Lags the voltage by an angle φ. 

The complete solution is  

)(2 φθω −++=
−

tSin
Z

VeKi mL
tR

 ….(7) 

The constant K  is to be evaluated using initial condition i.e., i(0 ) = 0 in equation (7) +2
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)0(0 2 φθ −++= Sin
Z

V
K m )(2 φθ −−=⇒ Sin

Z
V

K m   …..(8) 

∴The complete solution is  

⎥
⎦

⎤
⎢
⎣

⎡
−−−+=

−
L

tR
m eSintSin

Z
Vti )()()( φθφθω [ ]τφθφθω /)()( tm eSintSin

Z
V −−−−+=(or) …..(9) 

In equation (9) the first term gives the steady state response of the current which is 

sinusoidal and Lagging the applied voltage by an angle
R
LTan ωφ 1−= .  The second part gives 

the transient response which is reduced to zero in short time. 
RLC CIRCUIT 

Consider a series RLC circuit as shown in figure.  Let us assume that no-initial current in the 
inductor and no-initial charge in the capacitor. 
 
 
 
 
v(t) = Vm Sin(ωt+θ) 
 
 
        

t=0 
R 

i
C 

~

L 

    At t = 0 -       iL (0 -) = 0; VC (0 -) = 0 
    At t = 0        i+ L (0 ) = 0; V+ C (0 ) = 0 +

 Applying KVL, the equilibrium equation is  

)(1 θω +=++ ∫ tSinVdti
Cdt

diLRi m   ….(1)  

 Differentiating with respect to time, ‘t’ 

)(1
2

2

θωω +=++ tCosVi
Cdt

diL
dt
diR m  …..(2) 

)(1
2

2

θω
ω

+=++⇒ tCos
L

V
i

LCdt
di

L
R

dt
di m  

)(12 θω
ω

+=⎥⎦
⎤

⎢⎣
⎡ ++⇒ tCos

L
V

i
LC

D
L
RD m  ….(3) 

 The steady state (or) particular solution can be obtained as follows :  
 Let  )()( θωθω +++= tSinBtCosAip

 Then )()( θωωθωω +++−= tCosBtSinA
dt
dip  

)()( 22
2

2

θωωθωω +−+−= tSinBtCosA
dt
dip   

 Substituting in equation (2) we have 

C
1 [A Cos + B Sin ] + R [-Aω Sin +Bω Cos ]   )( θω +t )( θω +t )( θω +t )( θω +t

+ L [-Aω  Cos -Bω  Sin ] = V ω Cos )t( θ+ω )t( θ+ω )( θω +t2 2 m  

)t(CosV)t(CosALBR
C
A)t(SinBLAR

C
B

m
22 θ+ωω=θ+ω⎥⎦
⎤

⎢⎣
⎡ ω−ω++θ+ω⎥⎦

⎤
⎢⎣
⎡ ω−ω−⇒   

 Equating L.H.S. and R.H.S. we have 

0
LC
1

L
ARB0BLAR

C
B 22 =+

ω
−ω−⇒=ω−ω−  
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0
LC
1B

L
RA0

LC
1B

L
RA 22 =⎟

⎠
⎞

⎜
⎝
⎛ −ω+⎟

⎠
⎞

⎜
⎝
⎛ ω⇒=⎥⎦

⎤
⎢⎣
⎡ −ω−⎟

⎠
⎞

⎜
⎝
⎛ ω−⇒  

L
V

L
RB

LC
1A m2 ω

=⎟
⎠
⎞

⎜
⎝
⎛ ω

+⎥⎦
⎤

⎢⎣
⎡ −ω−⇒

L
V

LC
A

L
BRAVALBR

C
A m2

m
2 ω

=+
ω

+ω−⇒ω=ω−ω+   

⎟
⎠
⎞

⎜
⎝
⎛ ω

⎥⎦
⎤

⎢⎣
⎡ +ω−

=
⎟
⎠
⎞

⎜
⎝
⎛ ω

⎥⎦
⎤

⎢⎣
⎡ −ω

−=

L
R

LC
1

B

L
R
LC
1

BA

22

Q 2
m

2

2

222
2

L
RV

L
R

LC
1B ω

=
⎭
⎬
⎫

⎩
⎨
⎧ ω

+⎥⎦
⎤

⎢⎣
⎡ +ω−⇒  

⎭
⎬
⎫

⎩
⎨
⎧ ω

+⎥⎦
⎤

⎢⎣
⎡ ω−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ω

=∴

2

222
2

2

2

m

L
R

LC
1

L
RV

B

⎭
⎬
⎫

⎩
⎨
⎧ ω

+⎟
⎠
⎞

⎜
⎝
⎛ ω−

⎥⎦
⎤

⎢⎣
⎡ ω−ω

=
⎟
⎠
⎞

⎜
⎝
⎛ ω

⎥⎦
⎤

⎢⎣
⎡ +ω−

=∴

2

222
2

2
m

2

L
R

LC
1L

LC
1V

L
R

LC
1

BA    & 

)t(Sin

L
R

LC
1

L
RV

)t(Cos

L
R

LC
1L

LC
1V

i

2

222
2

2

2

m

2

222
2

2
m

p θ+ω

⎭
⎬
⎫

⎩
⎨
⎧ ω

+⎟
⎠
⎞

⎜
⎝
⎛ ω−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ω

+θ+ω

⎭
⎬
⎫

⎩
⎨
⎧ ω

+⎟
⎠
⎞

⎜
⎝
⎛ ω−

⎥⎦
⎤

⎢⎣
⎡ ω−ω

=   

⎭
⎬
⎫

⎩
⎨
⎧ ω

+⎟
⎠
⎞

⎜
⎝
⎛ ω−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ω

=φ

⎭
⎬
⎫

⎩
⎨
⎧ ω

+⎟
⎠
⎞

⎜
⎝
⎛ ω−

⎥⎦
⎤

⎢⎣
⎡ ω−ω

=φ

2

222
2

2

2

m

2

222
2

2
m

L
R

LC
1

L
RV

CosM;

L
R

LC
1L

LC
1V

SinMLet   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ω
⎭
⎬
⎫

⎩
⎨
⎧ ω

+⎟
⎠
⎞

⎜
⎝
⎛ ω−

⎭
⎬
⎫

⎩
⎨
⎧ ω

+⎟
⎠
⎞

⎜
⎝
⎛ ω−

⎥⎦
⎤

⎢⎣
⎡ ω−ω

=φ=
φ
φ

2

2

m

2

222
2

2

222
2

2
m

L
RV

L
R

LC
1

*

L
R

LC
1L

LC
1V

Tan
CosM
SinM  Then

2

2
2

R
L*

LC
1*

L ω
⎟
⎠
⎞

⎜
⎝
⎛ ω−

ω
⎟
⎠
⎞

⎜
⎝
⎛ ω−

ω
L

C
1

R
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω
ω

−
ω

=
ω

⎟
⎠
⎞

⎜
⎝
⎛ ω−

L
LC

L
R
1

R
L

LC
1 2

2 = = =  

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ ω−

ω
=φ∴ − L

C
1

R
1Tan 1  

)t(SinCosM)t(CosSinMip θ+ωφ+θ+ωφ=∴ =  )t(SinM φ+θ+ω

 Where 
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ ω−

ω
=φ − L

C
1

R
1Tan 1   Impedance angle of the circuit. 

 However, φφ 2222 SinMCosMM +=  

2

2

222
22

2
2

222
m

L
R

LC
1L

R
LC
1V

⎭
⎬
⎫

⎩
⎨
⎧ ω

+⎟
⎠
⎞

⎜
⎝
⎛ ω−

⎭
⎬
⎫

⎩
⎨
⎧

+⎟
⎠
⎞

⎜
⎝
⎛ ω−ω

 = 2

2

222
2

2

2

2
2
m

2

2

222
22

2
222

m

L
R

LC
1

L
RV

L
R

LC
1L

LC
1V

⎭
⎬
⎫

⎩
⎨
⎧ ω

+⎟
⎠
⎞

⎜
⎝
⎛ ω−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ω

+

⎭
⎬
⎫

⎩
⎨
⎧ ω

+⎟
⎠
⎞

⎜
⎝
⎛ ω−

⎟
⎠
⎞

⎜
⎝
⎛ ω−ω

=

 =

⎭
⎬
⎫

⎩
⎨
⎧ ω

+⎟
⎠
⎞

⎜
⎝
⎛ ω−

ω

=

⎭
⎬
⎫

⎩
⎨
⎧ ω

+⎟
⎠
⎞

⎜
⎝
⎛ ω−

ω

2

222
2

2

2

2
m

2

222
22

22
m

L
R

LC
1L

V

L
R

LC
1L

V  
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 If 
C
L2L

C
1

C
L2L

C
1L

C
1 22

22
22

22

2

−ω+
ω

=
ω
ω

−ω+
ω

=⎟
⎠
⎞

⎜
⎝
⎛ ω−

ω
 

2

22

2

24

222

22
4

222

22
2

2

2

LC
L2L

CL
L

LC
2

CL
1L

LC
1L

ω
ω

−
ω
ω

+
ω

=⎥
⎦

⎤
⎢
⎣

⎡ ω
−ω+

ω
=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ω−

ω
  If

 =
2

22
22 L

C
1

C
L2L

C
1

⎟
⎠
⎞

⎜
⎝
⎛ ω−

ω
=−ω+

ω
 

2
2

m
2

2

2
m

L
C
1R

V

L
C
1R

VM

⎟
⎠
⎞

⎜
⎝
⎛ ω−

ω
+

=

⎟
⎠
⎞

⎜
⎝
⎛ ω−

ω
+

=∴  

 Thus )t(Sin
L

C
1R

Vi
2

2

m
p φ+θ+ω

⎟
⎠
⎞

⎜
⎝
⎛ ω−

ω
+

=  

 The complementary function being equal to the DC response of RLC circuit. 

LC
1

L2
R 2

>⎟
⎠
⎞

⎜
⎝
⎛CASE 1 : Over damped, when  

)t(Sin
L

C
1R

V)eCeC(ei
2

2

mt
2

t
1

t φ+θ+ω

⎟
⎠
⎞

⎜
⎝
⎛ ω−

ω
+

++= β−βα   

LC
1

L2
R 2

=⎟
⎠
⎞

⎜
⎝
⎛CASE 2 : Critically damped, when  

)t(Sin
L

C
1R

V)tCC(ei
2

2

m
21

t φ+θ+ω

⎟
⎠
⎞

⎜
⎝
⎛ ω−

ω
+

++= α   

LCL
R 1

2

2

<⎟
⎠
⎞

⎜
⎝
⎛CASE 3 : Under damped, when  

)t(Sin
L

C
1R

V)tSinCtCosC(ei
2

2

m
21

t φ+θ+ω

⎟
⎠
⎞

⎜
⎝
⎛ ω−

ω
+

+β+β= α   
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THEOREMS FOR DETERMINATION OF INITIAL AND FINAL VALUES
Frequently it is desirable to determine the initial or final values of the response function 

before completing the solution of a problem. Even these values can be determined by 
inspection, the possibility of checking from the response transform is great value because the 
inverse transform of the response is tedious. Before finding the inverse transform it is good to 
find the initial and final values. These values can be found out by initial and final value 
theorems. 
INITIAL VALUE THEOREM: -  
If f (t) and its first derivative are laplace transformable, then the initial value of f (t) is 

)  = Lim f(t)  =     Lim s F(s)  f(0+

     t→0  s→    ∞

PROOF:- Taking The First derivative of f(t) 
 ∫∞ [ df(t) ] e-st dt  = s F(s) – f(0 ) +

      dt    0

Now let S approaches ∞, we have 
 Lim {[ df(t) ] e-st dt } = Lim [s F(s) – f(0 )] +

S→   S→ dt        ∞ ∞

Therefore, 0 = Lim [s F(s) – f(0 )] +

   S→    ∞

Therefore,  Lim [s F(s)] = f(0 ) +

  S→   ∞

FINAL VALUE THEOREM:-  
If f(t) and its first derivative are laplace transformable, then the final value of f(t) is 
 Lim [f(t)]  =  Lim s F(s) 
   t→   S→0  ∞

dt
tdf )(PROOF:- Taking the laplace transform on .  We have, 

∫∞ [ df(t) ] e-st dt  = s F(s) – f(0 ) +

      dt   0

Now let S approaches zero 
 Lim  ∫∞ [ d f(t) ] e-st dt  =  Lim [s F(s) – f(0 )]              …………….(1) +

  S→0   0      dt       S→0   
 ∫∞ [ d f(t) ] dt  =  Lim  [ d f(t) ] dt  =  Lim [ f(t) – f(0 ) ]             …………….(2) +

 0       dt      t→       t→dt     ∞ ∞

From equations 1 & 2 we have 
 Lim [ f(t) ] = Lim [ sF(s) ] 
   t→   S→0  ∞

 15


	TRANSIENT RESPONSE
	INITIAL VALUES OF NETWORK ELEMENTS
	FINAL VALUES OF NETWORK ELEMENTS
	SUMMARY:

	RC CIRCUIT
	VOLTAGE ACROSS CAPACITOR:
	TIME CONSTANT
	RL CIRCUIT


	VOLTAGE ACROSS THE INDUCTOR:
	TIME CONSTANT
	RLC CIRCUIT

	THE EXPRESSION FOR CIRCUIT CURRENT

	RC CIRCUIT
	RL CIRCUIT

	RLC CIRCUIT
	CASE 1 : Over damped, when  
	CASE 2 : Critically damped, when  
	CASE 3 : Under damped, when  


